干货 | 彻底理解ANDROID BINDER通信架构(上)

Norenesuth

Norenesuth

发表于 2017-01-05 09:15:48
内容来源: 网络

干货 | 彻底理解ANDROID BINDER通信架构(上)

一. 引言
1.1 Binder架构的思考

Android内核是基于Linux系统, 而Linux现存多种进程间IPC方式:管道, 消息队列, 共享内存, 套接字, 信号量, 信号. 为什么Android非要用Binder来进行进程间通信呢?

在说到Binder架构之前, 先简单说说大家熟悉的TCP/IP的五层通信体系结构:

应用层: 直接为用户提供服务;

传输层: 传输的是报文(TCP数据)或者用户数据报(UDP数据)

网络层: 传输的是包(Packet), 例如路由器

数据链路层: 传输的是帧(Frame), 例如以太网交换机

物理层: 相邻节点间传输bit, 例如集线器,双绞线等

这是经典的五层TPC/IP协议体系, 这样分层设计的思想, 让每一个子问题都设计成一个独立的协议, 这协议的设计/分析/实现/测试都变得更加简单:

  • 层与层具有独立性, 例如应用层可以使用传输层提供的功能而无需知晓其实现原理;

  • 设计灵活, 层与层之间都定义好接口, 即便层内方法发生变化,只有接口不变, 对这个系统便毫无影响;

  • 结构的解耦合, 让每一层可以用更适合的技术方案, 更合适的语言;

  • 方便维护, 可分层调试和定位问题;

Binder架构也是采用分层架构设计, 每一层都有其不同的功能:

  • Java应用层: 对于上层应用通过调用AMP.startService, 完全可以不用关心底层,经过层层调用,最终必然会调用到AMS.startService.

  • Java IPC层: Binder通信是采用C/S架构, Android系统的基础架构便已设计好Binder在Java framework层的Binder客户类BinderProxy和服务类Binder;

  • Native IPC层: 对于Native层,如果需要直接使用Binder(比如media相关), 则可以直接使用BpBinder和BBinder(当然这里还有JavaBBinder)即可, 对于上一层Java IPC的通信也是基于这个层面.

  • Kernel物理层: 这里是Binder Driver, 前面3层都跑在用户空间,对于用户空间的内存资源是不共享的,每个Android的进程只能运行在自己进程所拥有的虚拟地址空间, 而内核空间却是可共享的. 真正通信的核心环节还是在Binder Driver.

1.2 分析起点
Binder在Android系统使用颇为广泛, 几乎是整个Android架构的顶梁柱, Binder系统如此庞大, 那么这里需要寻求一个出发点来穿针引线, 一窥视Binder全貌. 那么本文将从全新的视角,以startService流程分析 为例子来说说Binder所其作用.首先在发起方进程调用AMP.startService,经过binder驱动,最终调用系统进程AMS.startService,如下图:

AMP和AMN都是实现了IActivityManager接口,AMS继承于AMN. 其中AMP作为Binder的客户端,运行在各个app所在进程, AMN(或AMS)运行在系统进程system_server.

1.3 Binder IPC原理

Binder通信采用C/S架构,从组件视角来说,包含Client、Server、ServiceManager以及binder驱动,其中ServiceManager用于管理系统中的各种服务。下面说说startService过程所涉及的Binder对象的架构图:

可以看出无论是注册服务和获取服务的过程都需要ServiceManager,需要注意的是此处的Service Manager是指Native层的ServiceManager(C++),并非指framework层的ServiceManager(Java)。ServiceManager是整个Binder通信机制的大管家,是Android进程间通信机制Binder的守护进程,Client端和Server端通信时都需要先获取Service Manager接口,才能开始通信服务, 当然查找懂啊目标信息可以缓存起来则不需要每次都向ServiceManager请求。

图中Client/Server/ServiceManage之间的相互通信都是基于Binder机制。既然基于Binder机制通信,那么同样也是C/S架构,则图中的3大步骤都有相应的Client端与Server端。

1.注册服务:首先AMS注册到ServiceManager。该过程:AMS所在进程(system_server)是客户端,ServiceManager是服务端。

2.获取服务:Client进程使用AMS前,须先向ServiceManager中获取AMS的代理类AMP。该过程:AMP所在进程(app process)是客户端,ServiceManager是服务端。

3.使用服务: app进程根据得到的代理类AMP,便可以直接与AMS所在进程交互。该过程:AMP所在进程(app process)是客户端,AMS所在进程(system_server)是服务端。

图中的Client,Server,Service Manager之间交互都是虚线表示,是由于它们彼此之间不是直接交互的,而是都通过与Binder Driver进行交互的,从而实现IPC通信方式。其中Binder驱动位于内核空间,Client,Server,Service Manager位于用户空间。Binder驱动和Service Manager可以看做是Android平台的基础架构,而Client和Server是Android的应用层.

这3大过程每一次都是一个完整的Binder IPC过程, 接下来从源码角度, 仅介绍第3过程使用服务, 即展开AMP.startService是如何调用到AMS.startService的过程.

Tips: 如果你只想了解大致过程,并不打算细扣源码, 那么你可以略过通信过程源码分析, 仅看本文第一段落和最后段落也能对Binder所有理解.

二. 通信过程

2.1 AMP.startService

[→ ActivityManagerNative.java ::ActivityManagerProxy]

主要功能:

  • 获取或创建两个Parcel对象,data用于发送数据,reply用于接收应答数据.

  • 将startService相关数据都封装到Parcel对象data, 其中descriptor = “android.app.IActivityManager”;

  • 通过Binder传递数据,并将应答消息写入reply;

  • 读取reply应答消息的异常情况和组件对象;

2.2 Parcel.obtain

[→ Parcel.java]

sOwnedPool是一个大小为6,存放着parcel对象的缓存池,这样设计的目标是用于节省每次都创建Parcel对象的开销。obtain()方法的作用:

1.先尝试从缓存池sOwnedPool中查询是否存在缓存Parcel对象,当存在则直接返回该对象;

2.如果没有可用的Parcel对象,则直接创建Parcel对象。

2.2.1 new Parcel

[→ Parcel.java]

nativeCreate这是native方法,经过JNI进入native层, 调用android_os_Parcel_create()方法.

2.2.2 android_os_Parcel_create

[→ android_os_Parcel.cpp]

创建C++层的Parcel对象, 该对象指针强制转换为long型, 并保存到Java层的mNativePtr对象. 创建完Parcel对象利用Parcel对象写数据. 接下来以writeString为例.

2.2.3 Parcel.recycle

将不再使用的Parcel对象放入缓存池,可回收重复利用,当缓存池已满则不再加入缓存池。这里有两个Parcel线程池,mOwnsNativeParcelObject变量来决定:

  • mOwnsNativeParcelObject=true, 即调用不带参数obtain()方法获取的对象, 回收时会放入sOwnedPool对象池;

  • mOwnsNativeParcelObject=false, 即调用带nativePtr参数的obtain(long)方法获取的对象, 回收时会放入sHolderPool对象池;

2.3 writeString

[→ Parcel.java]

2.3.1 nativeWriteString

[→ android_os_Parcel.cpp]

2.3.2 writeString16

[→ Parcel.cpp]

Tips: 除了writeString(),在Parcel.java中大量的native方法, 都是调用android_os_Parcel.cpp相对应的方法, 该方法再调用Parcel.cpp中对应的方法.

调用流程: Parcel.java –> android_os_Parcel.cpp –> Parcel.cpp.

2.4 mRemote究竟为何物

mRemote的出生,要出先说说ActivityManagerProxy对象(简称AMP)创建说起, AMP是通过ActivityManagerNative.getDefault()来获取的.

2.4.1 AMN.getDefault

[→ ActivityManagerNative.java]

gDefault的数据类型为Singleton<IActivityManager>, 这是一个单例模式, 接下来看看Singleto.get()的过程

2.4.2 gDefault.get

首次调用时需要创建,创建完之后保持到mInstance对象,之后可直接使用.

2.4.3 gDefault.create
文章Binder系列7—framework层分析,可知ServiceManager.getService(“activity”)返回的是指向目标服务AMS的代理对象BinderProxy对象,由该代理对象可以找到目标服务AMS所在进程

2.4.4 AMN.asInterface

[→ ActivityManagerNative.java]

此时obj为BinderProxy对象, 记录着远程进程system_server中AMS服务的binder线程的handle.

2.4.5 queryLocalInterface

[Binder.java]

对于Binder IPC的过程中, 同一个进程的调用则会是asInterface()方法返回的便是本地的Binder对象;对于不同进程的调用则会是远程代理对象BinderProxy.

2.4.6 创建AMP

[→ ActivityManagerNative.java :: AMP]

可知mRemote便是指向AMS服务的BinderProxy对象。

2.5 mRemote.transact

[→ Binder.java ::BinderProxy]

mRemote.transact()方法中的code=START_SERVICE_TRANSACTION, data保存了descriptor,caller, intent,resolvedType, callingPackage, userId这6项信息。
transactNative是native方法,经过jni调用android_os_BinderProxy_transact方法。

2.6 android_os_BinderProxy_transact

[→ android_util_Binder.cpp]

gBinderProxyOffsets.mObject中保存的是BpBinder对象, 这是开机时Zygote调用AndroidRuntime::startReg方法来完成jni方法的注册.

其中register_android_os_Binder()过程就有一个初始并注册BinderProxy的操作,完成gBinderProxyOffsets的赋值过程. 接下来就进入该方法.

2.7 BpBinder.transact

[→ BpBinder.cpp]

IPCThreadState::self()采用单例模式,保证每个线程只有一个实例对象。

2.8 IPC.transact

[→ IPCThreadState.cpp]

transact主要过程:

  • 先执行writeTransactionData()已向Parcel数据类型的mOut写入数据,此时mIn还没有数据;

  • 然后执行waitForResponse()方法,循环执行,直到收到应答消息. 调用talkWithDriver()跟驱动交互,收到应答消息,便会写入mIn, 则根据收到的不同响应吗,执行相应的操作。

此处调用waitForResponse根据是否有设置TF_ONE_WAY的标记:

  • 当已设置oneway时, 则调用waitForResponse(NULL, NULL);

  • 当未设置oneway时, 则调用waitForResponse(reply) 或 waitForResponse(&fakeReply)

2.9 IPC.writeTransactionData
[→ IPCThreadState.cpp]

将数据写入mOut

小米开放平台官方链接:
http://dev.xiaomi.com?hmsr=se...

官方QQ交流群:398616987
想要了解更多?
那就关注我们吧!

内容来源:https://segmentfault.com/a/1190000007997113

用户评论
开源开发学习小组列表