关于 ECharts4 新增的数据集(dataset)

2018-02-27 三国杀杀杀
option = {
    dataset: {
        // 提供一份数据。
        source: [
            ['product', '2015', '2016', '2017'],
            ['Matcha Latte', 43.3, 85.8, 93.7],
            ['Milk Tea', 83.1, 73.4, 55.1],
            ['Cheese Cocoa', 86.4, 65.2, 82.5],
            ['Walnut Brownie', 72.4, 53.9, 39.1]
        ] 
    },
    legend: {},
    tooltip: {},
    // 声明一个 X 轴,类目轴(category)。默认情况下,类目轴对应到 dataset 第一列。
    xAxis: {type: 'category'},
    // 声明一个 Y 轴,数值轴。
    yAxis: {},
    // 声明多个 bar 系列,默认情况下,每个系列会自动对应到 dataset 的每一列。
    series: [
        {type: 'bar'},
        {type: 'bar'},
        {type: 'bar'}
    ]
}

这个最简单的例子,得到的效果是这样的:

数据集带来的好处是:

  • 有了 `dataset` 后,能够贴近这样的数据可视化常见思维方式:基于数据(`dataset` 组件来提供数据),指定数据到视觉的映射(由 `encode` 属性来指定映射),形成图表。
  • 数据和其他配置可以被分离开来,使用者相对便于进行单独管理,也省去了一些数据处理的步骤。
  • 数据可以被多个系列或者组件复用,对于大数据,不必为每个系列创建一份。
  • 支持更多的数据的常用格式,例如二维数组、对象数组等,一定程度上避免使用者为了数据格式而进行转换。

数据到图形的映射

本篇里,我们制作数据可视化图表的逻辑是这样的:基于数据,在配置项中指定如何映射到图形。

概略而言,可以进行这些映射:

  • 指定 dataset 的列(column)还是行(row)映射为图形系列(series)。这件事可以使用 `series.seriesLayoutBy` 属性来配置。
  • 指定 dataset 的哪些列(column)或行(row)对应到坐标轴(如 X、Y 轴)、提示框(tooltip)、标签(label)、图形元素大小颜色等(visualMap)。这件事可以使用 `series.encode` 属性来配置。如果有需要映射颜色大小等视觉维度,可以使用 visualMap 组件。

按行还是按列做映射

有了数据表之后,使用者可以灵活得配置:数据如何对应到轴和图形系列。上面的例子中,没有给出这种映射配置,那么ECharts 就按最常见的理解进行默认映射:

  • X 坐标轴声明为类目轴,默认情况下会自动对应到 dataset.source 中的第一列;
  • 三个柱图系列,一一对应到 dataset.source 中后面每一列。

用户可以使用 `seriesLayoutBy` 配置项,改变图表对于行列的理解。`seriesLayoutBy` 可取值:

  • 'column': 默认值。系列被安放到 `dataset` 的列上面。
  • 'row': 系列被安放到 `dataset` 的行上面。
option = {
    legend: {},
    tooltip: {},
    dataset: {
        source: [
            ['product', '2012', '2013', '2014', '2015'],
            ['Matcha Latte', 41.1, 30.4, 65.1, 53.3],
            ['Milk Tea', 86.5, 92.1, 85.7, 83.1],
            ['Cheese Cocoa', 24.1, 67.2, 79.5, 86.4]
        ]
    },
    xAxis: [
        {type: 'category', gridIndex: 0},
        {type: 'category', gridIndex: 1}
    ],
    yAxis: [
        {gridIndex: 0},
        {gridIndex: 1}
    ],
    grid: [
        {bottom: '55%'},
        {top: '55%'}
    ],
    series: [
        // 这几个系列会在第一个直角坐标系中,每个系列对应到 dataset 的每一行。
        {type: 'bar', seriesLayoutBy: 'row'},
        {type: 'bar', seriesLayoutBy: 'row'},
        {type: 'bar', seriesLayoutBy: 'row'},
        // 这几个系列会在第二个直角坐标系中,每个系列对应到 dataset 的每一列。
        {type: 'bar', xAxisIndex: 1, yAxisIndex: 1},
        {type: 'bar', xAxisIndex: 1, yAxisIndex: 1},
        {type: 'bar', xAxisIndex: 1, yAxisIndex: 1},
        {type: 'bar', xAxisIndex: 1, yAxisIndex: 1}
    ]
}

效果是这样的:

更重要的是,我们可以使用 `encode` 配置项来更细节得指定数据如何映射到图形。总体是这样的感觉:

维度(dimension)

介绍 `encode` 之前,首先要介绍“维度(dimension)”的概念。

常用图表所描述的数据大部分是“二维表”结构,上述的例子中,我们都使用二维数组来容纳二维表。现在,当我们把系列(series)对应到“列”的时候,那么每一列就称为一个“维度(dimension)”,而每一行称为数据项(item)。反之,如果我们把系列(series)对应到表行,那么每一行就是“维度(dimension)”,每一列就是数据项(item)。

维度可以有单独的名字,便于在图表中显示。维度名(dimension name)可以在定义在 dataset 的第一行(或者第一列)。例如上面的例子中,'score'、'amount'、'product' 就是维度名。从第二行开始,才是正式的数据。`dataset.source` 中第一行(列)到底包含不包含维度名,ECharts 默认会自动探测。当然也可以设置 `dataset.sourceHeader: true` 显示声明第一行(列)就是维度,或者 `dataset.sourceHeader: false` 表明第一行(列)开始就直接是数据。

维度的定义,也可以使用单独的 `dataset.dimensions` 或者 `series.dimensions` 来定义,这样可以同时指定维度名,和维度的类型(dimension type):

var option1 = {
    dataset: {
        dimensions: [
            {name: 'score'},
            // 可以简写为 string,表示维度名。
            'amount',
            // 可以在 type 中指定维度类型。
            {name: 'product', type: 'ordinal'}
        ],
        source: [...]
    },
    ...
};

var option2 = {
    dataset: {
        source: [...]
    },
    series: {
        type: 'line',
        // 在系列中设置的 dimensions 会更优先采纳。
        dimensions: [
            null, // 可以设置为 null 表示不想设置维度名
            'amount',
            {name: 'product', type: 'ordinal'}
        ]
    },
    ...
};

大多数情况下,我们并不需要去设置维度类型,因为会自动判断。但是如果因为数据为空之类原因导致判断不足够准确时,可以手动设置维度类型。

维度类型(dimension type)可以取这些值:

  • 'number': 默认,表示普通数据。
  • 'ordinal': 对于类目、文本这些 string 类型的数据,如果需要能在数轴上使用,须是 'ordinal' 类型。ECharts 默认会自动判断这个类型。但是自动判断也是不可能很完备的,所以使用者也可以手动强制指定。
  • 'time': 表示时间数据。设置成 'time' 则能支持自动解析数据成时间戳(timestamp),比如该维度的数据是 '2017-05-10',会自动被解析。时间类型的支持参见 [data](option.html#series.data)。
  • 'float': 如果设置成 `float`,在存储时候会使用 `TypedArray`,对性能优化有好处。
  • 'int': 如果设置成 `float`,在存储时候会使用 `TypedArray`,对性能优化有好处。

数据到图形的映射(encode)

了解了维度的概念后,我们就可以使用 `encode` 来做映射。`encode` 声明的基本结构如下,其中冒号左边是坐标系、标签等特定名称,如 `'x'`, `'y'`, `'tooltip'` 等,冒号右边是数据中的维度名(string 格式)或者维度的序号(number 格式,从 0 开始计数),可以指定一个或多个维度(使用数组)。通常情况下,下面各种信息不需要所有的都写,按需写即可。

var option = {
    dataset: {
        source: [
            ['score', 'amount', 'product'],
            [89.3, 58212, 'Matcha Latte'],
            [57.1, 78254, 'Milk Tea'],
            [74.4, 41032, 'Cheese Cocoa'],
            [50.1, 12755, 'Cheese Brownie'],
            [89.7, 20145, 'Matcha Cocoa'],
            [68.1, 79146, 'Tea'],
            [19.6, 91852, 'Orange Juice'],
            [10.6, 101852, 'Lemon Juice'],
            [32.7, 20112, 'Walnut Brownie']
        ]
    },
    xAxis: {},
    yAxis: {type: 'category'},
    series: [
        {
            type: 'bar',
            encode: {
                // 将 "amount" 列映射到 X 轴。
                x: 'amount',
                // 将 "product" 列映射到 Y 轴。
                y: 'product'
            }
        }
    ]
};

效果如下:

下面给出个更丰富的 `encode` 的示例。

视觉通道(颜色、尺寸等)的映射

我们可以使用 `visualMap` 组件进行视觉通道的映射。这是一个示例:

var option = {
    dataset: {
        source: [
            ['score', 'amount', 'product'],
            [89.3, 58212, 'Matcha Latte'],
            [57.1, 78254, 'Milk Tea'],
            [74.4, 41032, 'Cheese Cocoa'],
            [50.1, 12755, 'Cheese Brownie'],
            [89.7, 20145, 'Matcha Cocoa'],
            [68.1, 79146, 'Tea'],
            [19.6, 91852, 'Orange Juice'],
            [10.6, 101852, 'Lemon Juice'],
            [32.7, 20112, 'Walnut Brownie']
        ]
    },
    grid: {containLabel: true},
    xAxis: {name: 'amount'},
    yAxis: {type: 'category'},
    visualMap: {
        orient: 'horizontal',
        left: 'center',
        min: 10,
        max: 100,
        text: ['High Score', 'Low Score'],
        // Map the score column to color
        dimension: 0,
        inRange: {
            color: ['#D7DA8B', '#E15457']
        }
    },
    series: [
        {
            type: 'bar',
            encode: {
                // Map the "amount" column to X axis.
                x: 'amount',
                // Map the "product" column to Y axis
                y: 'product'
            }
        }
    ]
};

几个常见的映射设置方式

问:如何把第三列设置为 X 轴,第五列设置为 Y 轴?

答:

series: {
    encode: {x: 3, y: 5},
    ...
}

问:如何把第三行设置为 X 轴,第五行设置为 Y 轴?

答:

series: {
    encode: {x: 3, y: 5},
    seriesLayoutBy: 'row',
    ...
}

问:如何把第二列设置为标签?

答:

关于标签的显示(`label.formatter`),现在支持使用这样的语法:

'aaa{@product}bbb{@score}ccc{@[4]}ddd' 来引用某个具体的维度值。其中 '{@score}' 表示因为 “名为 score” 的维度里的值,'{@[4]}' 表示引用序号为 4 的维度里的值。

series: [{
    label: {
        show: true,
        // 标签中引用第二列。
        formatter: 'The value at column 2 is: {@[2]}.'
    },
    ...
}, {
    label: {
        show: true,
        // 标签中引用维度名为 product 的列。
        formatter: 'The product name is: {@product}.'
    },
    ...
}]

问:如何让第 2 列和第 3 列显示在提示框(tooltip)中?

答:

series: {
    encode: {
        tooltip: [2, 3]
        ...
    },
    ...
}

问:数据里没有维度名,那么怎么给出维度名?

答:

dataset: {
    dimensions: ['score', 'amount'],
    source: [
        [89.3, 3371],
        [92.1, 8123],
        [94.4, 1954],
        [85.4, 829]
    ]
}

问:如何把第四列映射为气泡图的点的大小?

答:

var option = {
    dataset: {
        source: [
            [12, 323, 11.2],
            [23, 167, 8.3],
            [81, 284, 12],
            [91, 413, 4.1],
            [13, 287, 13.5]
        ]
    },
    visualMap: {
        show: false,
        dimension: 2, // 指向第三列(列序号从 0 开始记,所以设置为 2)。
        min: 2, // 需要给出数值范围,最小数值。
        max: 15, // 需要给出数值范围,最大数值。
        inRange: {
            // 气泡尺寸:5 像素到 60 像素。
            symbolSize: [5, 60]
        }
    },
    xAxis: {},
    yAxis: {},
    series: {
        type: 'scatter'
    }
};

问:encode 里指定了映射,但是不管用?

答:可以查查有没有拼错,比如,维度名是:'Life Expectancy',encode 中拼成了 'Life Expectency'。

数据的各种格式

多数常见图表中,数据适于用二维表的形式描述。广为使用的数据表格软件(如 MS Excel、Numbers)或者关系数据数据库都是二维表。他们的数据可以导出成 JSON 格式,输入到 `dataset.source` 中,在不少情况下可以免去一些数据处理的步骤。

假如数据导出成 csv 文件,那么可以使用一些 csv 工具如 [dsv]( github.com/d3/d3-dsv ) 或者 [PapaParse]( github.com/mholt/PapaP… ) 将 csv 转成 JSON。

在 JavaScript 常用的数据传输格式中,二维数组可以比较直观的存储二维表。前面的示例都是使用二维数组表示。

除了二维数组以外,dataset 也支持例如下面 key-value 方式的数据格式,这类格式也非常常见。但是这类格式中,目前并不支持 `seriesLayoutBy` 参数。

dataset: [{
    // 按行的 key-value 形式,这是个比较常见的格式。
    source: [
        {product: 'Matcha Latte', count: 823, score: 95.8},
        {product: 'Milk Tea', count: 235, score: 81.4},
        {product: 'Cheese Cocoa', count: 1042, score: 91.2},
        {product: 'Walnut Brownie', count: 988, score: 76.9}
    ]
}, {
    // 按列的 key-value 形式。
    source: {
        'product': ['Matcha Latte', 'Milk Tea', 'Cheese Cocoa', 'Walnut Brownie'],
        'count': [823, 235, 1042, 988],
        'score': [95.8, 81.4, 91.2, 76.9]
    }
}]

此外,ECharts 4 之前一直以来的数据声明方式仍然被正常支持,如果系列已经声明了 `series.data`, 那么就会使用 `series.data` 而非 `dataset`。

最后,给出一个示例,多个图表共享一个 `dataset`,并带有联动交互。

更详细的信息,可以参见这个教程。